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Fig. 1: Left: Comparison of action tokenization schemes with respect to three desiderata: high compression (P.1), total decodability (P.2),
and left-to-right causally ordered token structure (P.3). Existing methods satisfy only subsets of these properties, while OAT uniquely satisfies
all three. Middle: Behavior of different policy classes as inference progresses. Diffusion and flow policies refine actions through iterative
sampling, while autoregressive policies generate discrete tokens step-by-step. Due to its ordered token space, OAT enables prefix-based
detokenization: early tokens produce coarse action chunks, and additional autoregressive steps progressively refine actions, enabling flexible,
anytime action generation. Right: Overall policy performance aggregated over 20+ tasks.

Abstract—Autoregressive policies offer a compelling founda-
tion for scalable robot learning by enabling discrete abstraction,
token-level reasoning, and flexible inference. However, applying
autoregressive modeling to continuous robot actions requires
an effective action tokenization scheme. Existing approaches
either rely on analytical discretization methods that produce
prohibitively long token sequences or learned latent tokenizers
that lack structure, limiting their compatibility with next-token
prediction. In this work, we identify three desiderata for action
tokenization — high compression, total decodability, and a left-
to-right causally ordered token space — and introduce Ordered
Action Tokenization (OAT), a learned action tokenizer that satisfies
all three. OAT discretizes action chunks into an ordered sequence
of tokens using a transformer with registers, finite scalar quanti-
zation, and ordering-inducing training mechanisms. The resulting
token space aligns naturally with autoregressive generation and
enables prefix-based detokenization, yielding an anytime trade-
off between inference cost and action fidelity. Across more than
20 tasks spanning four simulation benchmarks and real-world
settings, autoregressive policies equipped with OAT consistently
outperform prior tokenization schemes and diffusion-based base-
lines, while offering significantly greater flexibility at inference
time.

I. INTRODUCTION

Autoregressive sequence models have emerged as a power-
ful foundation for modern robot learning. In particular, large
transformer-based policies have demonstrated strong general-
ization when trained directly on robotic data [7, 48] or adapted
from pre-trained vision-language backbones [8, 28, 63]. A
critical but often under-examined component underlying these

successes is how continuous robot actions are represented as
discrete symbols suitable for autoregressive generation.

This representation problem is known as action tokeniza-
tion: the process of mapping continuous control signals into a
sequence of discrete tokens. Experience from natural language
processing and computer vision has shown that tokenization
is far more than an implementation detail — it fundamentally
shapes learning dynamics, model capacity utilization, scala-
bility, and downstream performance [3, 17, 54, 66]. Despite
its centrality, action tokenization for robot control remains
significantly less understood than its counterparts in language
and vision.

The dominant approach in existing autoregressive robot
policies relies on naive discretization via per-dimension bin-
ning [7, 8, 28]. While conceptually simple, this strategy
yields extremely long token sequences whose lengths scale
linearly with action dimensionality and prediction horizon,
leading to substantial inefficiencies in training and inference.
To alleviate this issue, recent work has explored learned latent
tokenizers [4, 32, 45] and analytical compression methods
such as frequency-domain compression [50]. However, these
alternatives introduce their own limitations: learned tokeniz-
ers often produce unstructured latent spaces that are poorly
aligned with next-token prediction, while existing frequency-
domain approaches may sacrifice decodability. Across these
approaches, we identify a persistent and fundamental limita-
tion: existing action tokenization strategies face an inherent
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trade-off between compression rate, modelability' under au-
toregressive learning, and decodability. Improving one aspect
typically degrades another, resulting in token spaces that are
either too long to model efficiently, insufficiently structured
for stable generation, or partially decodable at inference time.

In this work, we argue that an effective action tokenizer for
autoregressive policies must simultaneously satisfy three key
properties (Fig. | left): (P.1) High Compression, reducing
the effective prediction horizon to enable efficient long-context
modeling; (P.2) Total Decodability, meaning the decoder is
a total function in which every token sequence maps to a
valid action chunk, with no undefined or invalid outputs; and
(P.3) Causal Ordering, imposing a left-to-right structure over
tokens that aligns with the inductive bias of next-token predic-
tion. While prior methods satisfy subsets of these desiderata,
none achieve all three simultaneously.

To bridge this gap, we introduce Ordered Action Tok-
enization (OAT), a learned action tokenizer that discretizes
continuous action chunks into highly compressed and causally
ordered token sequences. OAT employs transformer-based
register tokens to aggregate temporal information, finite scalar
quantization (FSQ) to construct a discrete bottleneck, and
nested dropout to explicitly induce ordering that aligns the
latent space with autoregressive generation. The resulting
tokenization ensures that any token prefix corresponds to a
plausible action chunk. Beyond improved modelability, the or-
dered structure learned by OAT enables a key capability absent
from prior approaches: prefix-based decoding. Autoregressive
policies may terminate generation early and still produce valid
actions, yielding a natural trade-off between computation and
action fidelity. As additional tokens are generated, decoded
actions are progressively refined.

In summary, this paper makes three contributions: (i) we
formalize a set of necessary desiderata for action tokenization
in autoregressive robot policies, exposing a fundamental trade-
off faced by existing methods; (ii) we propose OAT, a novel to-
kenizer that uniquely satisfies compression, total decodability,
and causal ordering simultaneously; and (iii) we demonstrate
that ordering is the critical ingredient for stable and scalable
autoregressive learning, enabling superior performance and
flexible, prefix-based decoding across 20+ simulation and real-
world manipulation tasks.

II. RELATED WORK ON GENERATIVE POLICIES

We focus on policies of the form 7(ai.p, | o1.m,) that
predict a chunk of actions conditioned on a history of ob-
servations. Predicting multi-step action sequences has been
shown to improve temporal consistency, reduce compounding
error, and stabilize long-horizon behavior compared to single-
step prediction [13, 71, 74]. Action chunking also amortizes
inference cost over multiple time steps and has become a
standard design choice in modern robot policies.

Diffusion and flow-based policies [10-13, 20, 22, 24, 25,
39, 41, 52, 57, 64, 65, 68, 72] have proven highly effective

' Modelability characterizes how challenging it is for generative models to
capture the distribution of the representation [16, 27, 29].

for continuous action generation and imitation learning, and
are widely used as standalone robot policies. More recently,
in VLA systems, diffusion and flow models are increasingly
employed as action experts or continuous decoding heads
that translate higher-level representations into executable ac-
tions [5, 24, 40, 47, 63]. In this role, they complement discrete
reasoning and planning components by providing expressive,
high-fidelity action synthesis.

Autoregressive policies model the distribution of action
sequences by factorizing it into a product of conditional
distributions, generating one element at a time [61]. Autore-
gressive models have demonstrated remarkable scalability and
generalization in language, image, and video modeling [35,
51, 58, 62, 67]. This success has motivated their adoption in
robotics, particularly within VLA systems [7, 8, 21, 28, 47—
50, 63].

Despite their success, the effectiveness of autoregressive
policies in robotics depends critically on the choice of to-
kenization. In this work, we systematically study the key
desiderata of action tokenization for autoregressive policies
and propose a principled tokenizer that addresses these re-
quirements. We formalize these properties and introduce OAT
in the following sections.

IIT. ACTION TOKENIZATION PRELIMINARIES

Robot actions, however, are inherently continuous and high-
dimensional. To enable autoregressive modeling, continuous
action chunks must first be discretized into a sequence of
tokens. This process, referred to as action tokenization, defines
a mapping

T: ai:H, — TI:HU

which maps a continuous action chunk of horizon H, and
dimensionality D, to a sequence of H; discrete tokens drawn
from a vocabulary V. A corresponding detokenization mapping

—1
T :leHl — ai:H,

maps token sequences back into continuous action space,
producing executable action chunks. Autoregressive policies
operate entirely in the discrete token space defined by T,
while control execution relies on 7! to convert generated
token sequences into continuous actions.

We argue that an efficient and effective action tokenizer,
that balances rate-distortion-modelability trade-off [6, 16, 55,
59, 75], should satisfy the following three properties:

P.1 7 achieves a high compression rate.
P.2 7! is a well-defined total function.
P.3 T1.1, has a left-to-right causal ordering.

P.1: The token horizon H; should be sufficiently small to en-
able efficient autoregressive modeling, while retaining enough
capacity to preserve necessary information from the original
action chunk. P.2: The decoder 7! must be a well-defined
total function: for every token sequence 71.p, in the discrete
token space, 7 ! (T}.p,) produces a valid action chunk ay.p, .
This property is critical in autoregressive settings, where
policies may generate arbitrary token sequences at inference
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Fig. 2: Coarse-to-fine action chunk reconstruction. Visualization of reconstructed action chunks using increasing numbers of decoded
tokens. Panels (a—d) show OAT reconstructions using K € {1, 2,4, 8} tokens, respectively, while (¢) shows the ground-truth action chunk.
Earlier tokens capture the coarse, global structure of the motion, while additional tokens progressively refine fine-grained details, yielding
trajectories that increasingly match the ground truth. Ghosted poses indicate temporal progression within each reconstructed action chunk.
Interactive visualization on project website: ordered-action-tokenization.github.io.

time. If 7! is only partially defined, invalid or non-decodable
token sequences can lead to undefined behavior and catas-
trophic failures during execution. P.3: The token sequence
T1.x, should admit a meaningful left-to-right causal ordering
aligned with causal, next-token prediction. Such a structure
is essential for stable autoregressive generation: early tokens
should capture coarse, globally salient aspects of the action
chunk, while later tokens refine finer details. An ordered token
space improves controllability, robustness, and compatibility
with prefix-based generation, and we revisit this property
throughout the paper both conceptually and empirically.

A. Binning

The most commonly used action tokenization approach
is per-dimension binning (Bin) [7, 8, 28]. For each action
dimension, the range of values observed in the dataset is
normalized to [—1, 1], then divided into N uniform bins, and
each continuous value is mapped to its corresponding bin
index. Given an action chunk of shape H, x D,, binning
produces a token sequence

T(ar:m,) =T 1, Ti,p, T2, -, T, D), Tij € [N].

While Bin is conceptually simple and yields a well-defined,
totally decodable mapping (P.2), it does not provide the left-to-
right ordering we seek (P.3): the token order is a serialization
over dimensions and time rather than a hierarchy aligned with
causal next-token prediction. Moreover, Bin scales poorly
— long horizons and high-dimensional actions can produce
hundreds of tokens per chunk — severely slowing training
and inference and introducing substantial latency. Therefore,
Bin fails to satisfy P.1 and P.3, despite meeting P.2.

B. Frequency-domain Transform

An alternative line of work explores frequency-domain
compression, for instance Frequency-space Action Sequence
Tokenization (FAST) [50], which employs the Discrete Cosine
Transform (DCT) to decompose action chunks into frequency
coefficients, followed by Byte Pair Encoding (BPE) [18].
FAST achieves high information density (P.1), and crucially,
its low-frequency components first then high-frequency com-
ponents ordering (P.3) improves downstream autoregressive

policies: early token predictions capture the overall trajectory
shape, stabilizing rollout before finer details are generated.

However, FAST detokenization 7 ! is a partial function
that violates P.2. Because BPE produces variable-length se-
quences, there is no guarantee that an arbitrary token sequence
generated by the policy will decode into a valid frequency
matrix of fixed dimensions. This structural mismatch renders
the decoding function partially undefined for invalid token
counts, leading to potential runtime failures. We refer readers
to Appendix B and the discussion on Hugging Face’ for further
details.

C. Quantized Latents

Another line of work explores learned compression via
encoder-decoder architectures with vector quantization [4, 32,
45]. These methods map action chunks into a latent sequence
of shape H; x D;, which is quantized [44, 60] into tokens. The
latent horizon H; and dimension D; are hyperparameters, often
chosen relative to H, and D,. Such approaches can achieve
extremely high compression; for example, mapping action
chunks of horizon H, = 32 into latent sequences with H; = §
tokens, satisfying P.1. Because 7 and 7 ~! are approximated
by encoder and decoder neural networks respectively, 7! are
always total (P.2).

However, existing learned tokenizers typically produce un-
structured token spaces. The tokens lack a consistent ordering
or hierarchical abstraction, making them poorly suited for
autoregressive generation. As a result, while existing learned
tokenizers satisfy P.1 and P.2, they fail to meet P.3.

IV. OAT: ORDERED ACTION TOKENIZATION

Our objective is to learn an action tokenizer that satisfies
three desiderata introduced in Sec. I1I: high compression (P.1),
total decodability (P.2), and a structured ordering over tokens
(P.3). While prior learned tokenizers achieve compact and
decodable representations, they lack an explicit ordering over
latent tokens [4, 32, 45], which limits their compatibility with
autoregressive policies. We introduce OAT, a learned autoen-
coder framework that discretizes action chunks into an ordered
sequence of tokens. OAT encodes actions using transformer-
based register tokens, discretizes the resulting latents with

Zhttps://huggingface.co/physical-intelligence/fast/discussions/4
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Fig. 3: OAT overview. Left: OAT maps a chunk of continuous actions into an ordered sequence of discrete tokens using a transformer encoder
with register tokens, FSQ, and nested dropout to induce token ordering. The resulting tokens form a compact action representation, which
is decoded to reconstruct action chunks for downstream autoregressive policies. Right: During OAT policy inference, tokens are generated
autoregressively and can be detokenized from any prefix. As more autoregressive steps are taken, additional tokens progressively refine the
decoded action chunk, producing actions with increasing temporal and spatial detail. OAT enables flexible, anytime action generation.

Algorithm 1 OAT Tokenizer Training

Require: Dataset D of action chunks {a.z, }; encoder Ey(-);
learnable register tokens 7.z, ; quantizer FSQ(-); decoder
Dy(+); learnable mask token MASK; nested-dropout distri-
bution p(-).

1: while not converged do

2 Sample action chunk aq.4, ~ D

3. Encoding: a1.m, ® z1:1, <+ Eg(ar.a, ®71:81,)

4:  Quantization: 21.z, < FSQ(z1.11,)

5 Tail dropout: 21:Hl — Z1.k D <MASK>K+1;H“K ~ p()
6:  Decoding: a1.p, + Do(%1.1,)

7. Reconstruction loss: £ < ||a1.z, — a1.m, ||3

8:  Optimization: {¢,r,0,MASK} < {¢,r,0,MASK} —nV L
9: end while

10: T(-) + {Ey,r1.1,, FSQ}, T 1(-) + {Dy,MASK}

11: return 7 (-), 7 1(")

FSQ [44], and reconstructs actions via a conditional decoder.
To induce ordering in the token space, we combine causal
attention over register tokens with nested dropout during
training. Together, these design choices encourage an ordered
latent representation in which earlier tokens capture coarse,
global structure and later tokens refine details (Fig. 2). As
a result, OAT supports decoding from any prefix of the token
sequence, enabling variable-length and anytime reconstruction
of action chunks. We demonstrate OAT training pipeline (left)
and autoregressive policies operate on OAT (right) in Fig. 3.

A. Tokenization T and Detokenization T~}

The objective of the tokenizer T is to compress a continuous
action chunk of shape H, x D, into a compact discrete
representation of shape H; x D;. To this end, we concatenate
the input action sequence with a fixed set of learnable register
tokens, r1.p,, which act as a compact read—write memory for
summarizing the temporal structure of the input [15, 69]. A
transformer encoder jointly processes the action chunk and
register tokens, allowing information from the action sequence
to be aggregated into the registers. After encoding, the register

tokens form the bottleneck representation [16] of the autoen-
coder, while the encoded action tokens are discarded.

The register latents 2.y, are discretized using FSQ, yielding
a sequence of H; discrete tokens 7., . These tokens constitute
the action representation used both for reconstruction during
tokenizer training and as the action space for downstream
autoregressive policies.

The decoder implements the detokenization mapping 7 1,
generating a continuous action chunk conditioned on the
discrete token sequence. The OAT framework imposes no
restrictions on the specific decoder architecture or training
objective. In this work, we employ a single-pass transformer
decoder similar to [73] (see Fig. 3), which we find provides
a favorable trade-off between reconstruction quality, stability,
and computational efficiency. We provide more details on
decoding in Appendix C. The tokenizer 7 and detokenizer
T~! are trained jointly end-to-end using a reconstruction
objective. Pseudocode for OAT training is provided in Algo. 1,
also see Fig. 3 for the pipeline.

B. Inducing Token Ordering For Modelability

Prior work has highlighted the importance of left-to-right
causal ordering for effective autoregressive modeling [23, 26,
27, 29]. To align the learned token space with autoregressive
generation, we explicitly induce a left-to-right ordering over
tokens 7.y, that naturally aligns with next-token prediction.
Our goal is to ensure that earlier tokens capture coarse,
globally salient aspects of an action chunk, while later tokens
refine finer details. We introduce two complementary mecha-
nisms to impose an ordering and support variable-length token
sequences.

1) Nested Dropout: We train OAT to produce an ordered
representation by applying nested dropout to the register
tokens during training [9, 30, 53]. Given register tokens of
length H;, we randomly sample the number of tokens to
retain, K € [H)], and mask out the remaining H; — K tail
tokens. Under this training regime, the encoder is encouraged
to pack information into the register tokens in a prioritized,



ordered manner, while the decoder learns to reconstruct action
chunks from variably sized token prefixes. As a result, the
first few tokens capture the most important aspects of the
action sequence, while additional tokens progressively refine
the reconstruction. Simple action chunks can therefore be
faithfully represented with few tokens, whereas more complex
behaviors require longer token sequences. Importantly, this
ordering is not manually specified but emerges naturally from
the nested dropout objective applied to the register tokens.

2) Causal Attention: Complementary to nested dropout,
we impose a causal attention [61] structure over the register
tokens to further reinforce ordering. Specifically, the encoded
action tokens attend freely to one another but do not attend
to registers. Each register token attends to all action tokens,
enabling global aggregation, but register-register attention is
causally masked such that the i-th register token only attends
to the j-th register token if ¢+ > j. This causal dependency
structure enforces a left-to-right information flow among reg-
isters, aligning the learned token sequence with autoregressive
prediction and stabilizing generation from partial prefixes.

C. Information-Theoretic Interpretation of Token Ordering

The ordering induced by OAT admits a natural interpretation
from information theory. Classical results by Shannon show
that the optimal code length for representing an event scales
with the negative logarithm of its probability, i.e., — log p [55]:
frequent patterns require fewer bits to encode, while rare or
atypical events demand greater representational capacity. In
our setting, action chunks a;.x, are drawn from a data distri-
bution with highly non-uniform structure — most trajectories
share common coarse patterns, while fine-grained deviations
occur less frequently.

Under this lens, the ordered token sequence 1., learned
by OAT can be viewed as an implicit progressive coding of
action information. Early tokens are encouraged to capture the
dominant motion pattern shared across many trajectories. Later
tokens then progressively correct residual errors and local
details. This behavior emerges naturally from nested dropout:
since prefixes must reconstruct actions under partial informa-
tion, the tokenizer learns to allocate information in decreas-
ing order of frequency and importance. This interpretation
explains both the monotonic improvement in reconstruction
quality with increasing prefix length and the strong alignment
between token order and autoregressive next-token prediction.
Importantly, the ordering is not imposed heuristically but arises
from optimizing reconstruction under variable information
budgets.

D. Autoregressive OAT Policies

We use OAT as the discrete action representation for au-
toregressive policy learning. Given an observation history
01:1, the policy models a distribution over action tokens by
factorizing

H,

p(leHl | Oleo) - Hp(j_lt | T<i701:H0)7
i=1

Algorithm 2 Autoregressive OAT Policy Inference

Require: Observation history o;.r7,; autoregressive policy
7(-); detokenizer 7! = {D(-),MASK}; prefix length
K < H,.

: Initialize empty token prefix T.x < &

: for i < 1 to K do
Next-token sampling: T; ~ (- | T<;, 01.11, )

Tk < Tk ®T;

end for

: Pad tail tokens: T1.p, < Th.x ® (MASK) k1.1,

. Detokenize to action chunk: d1.p, < 7 *(Th.1,)

: return aj.p,

and generates tokens sequentially. The resulting token se-
quence is detokenized via 7! to produce a continuous action
chunk for execution.

The ordered token space (P.3) induced by OAT is essential
for effective autoregressive modeling. Earlier tokens encode
the coarse, global structure of the action chunk, while later
tokens progressively refine finer details, aligning next-token
prediction with the semantics of action generation. As a
result, prefixes of the token sequence correspond to valid,
increasingly detailed action chunks rather than arbitrary partial
reconstructions.

Crucially, autoregressive generation need not proceed to
completion. Because any prefix 7T).x can be detokenized into
a valid action chunk, OAT supports prefix-based execution
and enables an anytime trade-off between computation and
performance. Short prefixes yield fast but coarse predictions,
while longer prefixes produce more refined actions at higher
computational cost. This flexibility arises naturally from the
ordered tokenization and requires no changes to the policy
architecture or training objective, distinguishing OAT from
prior tokenizers that rely on fixed-length detokenization. The
pseudocode for OAT policy inference is provided in Algo. 2.

V. EXPERIMENTS

We evaluate OAT by comparing autoregressive policies
equipped with different action tokenization schemes, as well as
non-autoregressive diffusion-based policies. Our experiments
assess both downstream policy performance and the impact of
key design choices through controlled ablations.

A. Experimental Setup

Unless otherwise specified, all policies, tokenizers, and
evaluation protocols follow the setup described below. We
provide more details in Appendix A.

1) Policy Implementation: All policies are trained to predict
an action chunk of horizon H, = 32 conditioned on the past
H, = 2 observations. During execution, we only execute the
first %Ha = 16 actions from each chunk before re-inferring,
following standard practice in action chunking.

We evaluate multiple action tokenization schemes within an
autoregressive policy framework. We consider per-dimension
binning (Bin) and frequency-domain tokenization (FAST).
We set Bin vocabulary size to |V| = N = 256, and we use
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Fig. 4: Simulation setups. We evaluate OAT across four widely used robotic manipulation benchmarks spanning diverse task structures and
dynamics. These environments cover a range of skills, including object manipulation, tool use, and multi-stage interactions.

|[V| = 1024 for FAST, which are common configurations in
prior work. We additionally compare against Quantized Skill
Transformer (QueST) [45], a representative learned latent tok-
enizer. QueST compresses action sequences using a temporal
convolution followed by a causal transformer encoder, reduc-
ing the temporal horizon from H, to H; with a downsampling
factor of 4 (i.e., H} = iHa). QueST and OAT use the same
decoder architecture. OAT adopts the same hyperparameters as
QueST: a 2-layer transformer encoder with model dimension
256 and head dimension 64, a 4-layer transformer decoder

with the same dimensions, latent horizon H; = 8, latent
dimension D; = 4, and FSQ levels [8,5,5,5], correspond-
ing to an implicit codebook size |V| = 1000. In addition

to autoregressive policies, we include a non-autoregressive
baseline based on diffusion policy (DP) [13] with a transformer
backbone. To isolate the effects of action representation and
tokenization, we use the same policy backbone architecture
for all methods.

2) Evaluation Tasks: We conduct comprehensive ablations
and analyses, comparing OAT against Bin, FAST, QueST,
and DP across 20+ tasks drawn from 4 widely used sim-
ulation benchmarks (Fig. 4). Specifically, we evaluate on
LIBERO [38], RoboMimic [43], MetaWorld [70], and Robo-
Casa [46]. For simulation experiments, we evaluate each task
across 5 random seeds, with 50 evaluation rollouts per seed,
resulting in a total of 250 rollouts per task. We report the mean
success rate along with its standard error across rollouts.

We additionally validate OAT on real-world tabletop ma-
nipulation using a fixed-base ARX-5 robotic arm with a
single Logitech Webcam for visual observations. We consider
two tasks: Pick & Place Ball and Stack Cups (Fig. 6). For
each task, we collect 200 human teleoperation demonstrations.
The action space is 7D, consisting of end-effector position,
orientation, and gripper control. During evaluation, each task is
executed for 20 independent trials, and we report task success
rates.

(b) RoboMimic

pm
o

(d) RoboCasa

Policy ‘ LIBERO  RoboMimic MetaWorld RoboCasa
DP 36.6 = 0.2 67.1 +13 193 £ 1.6 54.0 = 1.6
Bin 14.4 = 0.6 395+ 12 14.5 + 0.7 27.7 0.9
FAST 23.0 05 240 1.5 7.1 07 13.2 = 1.1
QueST | 482 £ 06 66.9 + 0.8 179 £09 523 +19
OAT, 11.7 £ 0.7 50.8 + 1.4 113 £ 04 477 13
OAT3 39.8 £ 0.5 525+ 12 164 + 03 50.3 0.8
OATy 46.4 + 0.6 65.3 0.9 19.5 £ 038 51.7 1.0
OATg 56.3 + 1.0 73.1 £05 244 +03 54.6 = 1.1

TABLE I: Simulation benchmarking across four manipulation
benchmarks. OAT consistently outperforms prior action tokenization
schemes and exhibits monotonic performance improvements as the
number of decoded tokens increases. OAT ik denotes detokenization
using the first /K tokens. Results report mean success rates with
standard error across 5 seeds and 50 evaluation rollouts per seed
per task. Complete results in Appendix D.

B. Simulation Benchmarking

Table I reports performance across four simulation bench-
marks. Bin performs poorly across all benchmarks, as it
produces excessively long token sequences and thus violates
P.1. FAST achieves compact representations but suffers from
invalid or non-decodable token sequences, violating P.2 and
leading to unstable policy behavior. Notably, both methods
exhibit high reconstruction fidelity, confirming that reconstruc-
tion error alone is not predictive of downstream policy perfor-
mance. QueST provides a substantially stronger baseline by
leveraging quantized latent actions. However, its latent token
space lacks an ordering, violating P.3, hence its autoregressive
modeling does not benefit from inductive biases from causal
token ordering aligned with next-token prediction.

OAT consistently outperforms prior action tokenization
schemes and matches or exceeds the strongest baselines, while
additionally enabling prefix-based decoding that is unavail-
able to existing methods. We denote OATy as executing
action chunks reconstructed from the first /X tokens, i.e.,
detokenizing the prefix 7. with K < H;. OAT exhibits
a clear and consistent monotonic performance trend as the
number of autoregressive steps increases. As additional tokens



LIBERO RoboMimic MetaWorld RoboCasa
Policy | #Tok.  Lat. | #Tok.  Lat. | #Tok.  Lat. | #Tok.  Lat.
DP X 420 x 381 x 377 X 353
Bin 224 517.2 224 509.5 128 306.6 384 888.3
FAST 442 1144 | 53.1 142.0| 49.8 129.7 | 69.7 166.1
QueST 8 271 8 29.6 8 314 8 302
OAT, 1 105 1 113 1 155 1 135
OATy 2 132 2 153 2 179 2 158
OATy 4 174 4 184 4 221 4 19.8
OATg 8 274 8 299 8 313 8 300

TABLE II: Token count and inference latency. Comparison of
action token counts (#Tok.]) and policy inference times (Lat.])
across various benchmarks. For FAST, which generates variable-
length sequences, we report the mean token count. OAT denotes
detokenization using the first K tokens. Policy latency is measured
in milliseconds (ms) per inference on one NVIDIA A100.

Policy ‘ LIBERO  RoboMimic  MetaWorld RoboCasa
QueST | 48206  66.9 £08 179 £09 523 +19
OAT, 11.7 = 0.7 508 + 1.4 11.3 £ 04 477 +13
OATy 39.8 0.5 525+ 1.2 164 + 03 50.3 + 0.8
OAT, 464 +06 653 +09 19508 51.7+10
OATg 563 +10  73.1+05 244 +03 546+ 1.1
OATx | 35207 61.1 12 17.6 05 485+ 1.6

TABLE III: OAT without ordering underperforms. Simulation
benchmarking across four manipulation benchmarks. OAT i denotes
detokenization using the first K tokens, while OAT, denotes tok-
enizer training without nested dropout. Results report mean success
rates with standard error across 5 seeds and 50 evaluation rollouts
per seed per task.

are generated, performance improves steadily: OAT, closes
much of the gap to QueST and DP, while OATg achieves
the best performance across all benchmarks. This enables
an anytime trade-off between computation and performance:
policies may terminate autoregressive generation early when
latency constraints are tight, or generate longer sequences for
improved performance.

C. Ablation and Analysis

1) Compression Rate and Inference Latency: Table Il
compares action compression rates and inference latency
across methods. Bin produces extremely long token se-
quences, resulting in prohibitively high inference latency,
while FAST achieves only moderate compression. QueST
compresses each action chunk into a fixed-length token se-
quence, yielding significantly lower inference latency. How-
ever, its fixed decoding length limits flexibility. OAT enables a
smooth and controllable trade-off between compression rate,
inference latency, and policy performance. With full decoding,
OAT and QueST have the same amount of compute per
inference.

2) How Token Space Ordering (P.3) Matters?: Table III
studies the role of token space ordering by comparing OAT
trained with and without ordering-inducing mechanisms, i.e.,
nested dropout, which enforces a left-to-right priority structure
over tokens during training. The variant OAT , disables nested
dropout, resulting in an unordered token space, while all other
architectural and training settings are kept identical.

Action horizon Action horizon
16 32 64 8 16 32 64

260 64 2.8 11 287 260 7.6 0.8
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(a) Execute %H o actions (b) Execute a fixed 8 actions

Fig. 5: Effect of action and token horizons. Performance of
OATg, on LIBERO as a function of action horizon H, (rows) and
token horizon H; (columns). Results report mean success rates with
standard error across 5 seeds and 50 evaluation rollouts per seed per
task.

Across all benchmarks, removing token ordering leads to
a consistent performance degradation. OAT s performance is
significantly worse than OAT, and OATg, and in some cases
falls below QueST. This indicates that the structure of the
token space plays a critical role in effective autoregressive
policy learning: by aligning the token space with next-token
prediction, ordering introduces a favorable inductive bias that
facilitates both learning and inference.

3) How Action (H,) and Latent (H;) Horizon Matter?:
Table 5 analyzes the interaction between action horizon H,
and latent token horizon H; for OAT on LIBERO. The latent
horizon H; is a training-time hyperparameter that determines
the number of register tokens. We train separate models for all
combinations of H,, € {8,16,32,64} and H; € {1,2,4,8}. To
disentangle modeling effects from execution effects, we report
two execution regimes: executing %Ha actions before re-
inference (Table 52), which reflects practical receding-horizon
control, and executing a fixed 8 actions for all H, (Table 5b)
as a controlled diagnostic.

Under the practical execution regime (Table 5a), perfor-
mance degrades monotonically with increasing H, for a
fixed H;, reflecting the growing difficulty of long-horizon
prediction under limited latent capacity. Increasing H; consis-
tently mitigates this effect, indicating that additional register
tokens enable finer-grained temporal encoding. However, when
H, < Hj, the information bottleneck largely disappears, yield-
ing diminishing returns; prior work suggests that moderate
bottlenecks are beneficial for learning [16, 19, 34], explaining
the observed saturation for short horizons such as H, = 8. The
fixed-execution setting (Table 5b) reveals a complementary
trend. For a fixed H;, performance becomes non-monotonic
in H,: moderate horizons improve performance by stabilizing
early actions [71], while excessively long horizons degrade
performance due to the difficulty of compressing long futures
into a limited number of tokens.

Together, these results highlight the trade-off between tem-
poral lookahead and latent capacity. Predicting beyond the
execution horizon can improve robustness and consistency, but
only when the tokenizer can faithfully represent the future.
Although the fixed-step execution regime is not intended to



FSQ Levels [8,6,5] [8,8.8] [8,5,5,5] [8,8,6,5] [7,5,5,5.,5]
Induced |V 240 512 1000 1920 4375
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TABLE 1V: Effect of codebook size. Performance of OAT on
LIBERO under varying FSQ codebook sizes. Results are relatively
insensitive to codebook size once moderate capacity is reached,
while excessively large codebooks degrade downstream autoregres-
sive learning. Results report mean success rate with standard error
across 5 seeds and 50 evaluation rollouts per seed per task.

(a) Pick & Place Ball
e

Ball placed in the cup A ]

(b) Stack Cups
T—

Blue cups stacked on white cup

t

Fig. 6: Real-world setups. We validate OAT on two tabletop manip-
ulation tasks using a fixed-base robotic arm: (a) Pick & Place Ball
and (b) Stack Cups. Objects are randomly placed on the table.

reflect deployment, it provides a useful diagnostic when inter-
preted alongside the receding-horizon setting. These findings
motivate our default choice of H, = 32 and H;, = 8§,
which balances long-horizon expressivity, compression, and
execution stability.

4) How Codebook Size Matters?: Table IV examines the
impact of discrete codebook size |V|, controlled via FSQ level
configurations. We vary |V| from 28 to 2'2 while keeping
all other architectural and training settings fixed. Performance
improves substantially as the codebook capacity increases
from very small to moderate, after which it saturates. However,
further enlarging the codebook leads to a clear performance
drop. We attribute this degradation to reduced modelability for
downstream autoregressive policies: larger codebooks increase
token entropy and sparsity, making next-token prediction more
difficult despite improved reconstruction fidelity.

D. Real-world Results

Table V reports real-world performance on two tabletop
manipulation tasks. The results closely mirror trends observed
in simulation, validating that the benefits of ordered, prefix-
decodable action tokens transfer to real-world robotic control.
Bin performs poorly primarily due to excessive latency in-
duced by long token sequences, which degrades closed-loop
responsiveness. FAST, despite its compact tokenization, fails
to decode consistently and exhibits unstable, overly aggressive
behavior, preventing reliable task execution. Que ST improves
over these baselines but remains limited by its unstructured
latent representation.

OAT consistently achieves the highest success rates across
both tasks, with performance improving monotonically as the
number of decoded tokens increases. Beyond success rates, we
observe clear qualitative differences in trajectory execution.

TABLE V: Real-world results

Policy | P&P Ball Stack Cups . -

on two manipulation tasks. OAT
DP 14/20 11/20  consistently outperforms others,
Bin 4/20 8720 and performance improves as the
giZgT 1? ; ;8 g;gg number of decoded tokens in-

creases. OATy denotes detok-
OAT; 7120 3720 enization using the first K to-
OAT2 11720 9720 kens. We report mean success
OATy 13720 12720 rates over 20 evaluation rollouts
OATg 16/ 20 16 /20 per task.

OAT produces noticeably smoother motions, with smoothness
improving as more tokens are decoded. A common failure
mode for OAT 4 is insufficient execution precision: the robot
often reaches configurations that are visually close to success
but fails to complete fine-grained insertions (e.g., placing the
ball fully into the cup). This behavior indicates that early
tokens capture coarse, global action structure, while later
tokens encode fine-grained corrective details necessary for
precise manipulation, directly supporting the design intent of
ordered tokenization.

VI. DISCUSSION AND LIMITATIONS

This work introduces OAT, an action tokenization frame-
work for autoregressive policies that emphasizes ordered,
prefix-decodable action representations. While our results
demonstrate strong performance and flexibility, several broader
implications and open challenges remain.

Recent VLA systems increasingly combine discrete rea-
soning with continuous control by integrating multiple policy
components. For example, the BEHAVIOR-1K [33] winning
system [31] employs FAST as an auxiliary discrete action
representation alongside continuous flow-based experts, high-
lighting an emerging paradigm in which action tokenization
complements rather than replaces continuous policies. In this
context, OAT offers a principled alternative: its left-to-right
ordered and prefix-decodable token space supports autoregres-
sive reasoning over actions while remaining compatible with
continuous decoders such as diffusion or flow models. This
makes OAT a natural auxiliary supervision signal, planning
interface, or intermediate abstraction for future VLA pipelines.

A key capability enabled by OAT is prefix-based detok-
enization, which allows actions to be decoded from variable-
length token prefixes and provides an anytime trade-off be-
tween computation and action fidelity. In this work, however,
the autoregressive depth is fixed at deployment time. From
an information-theoretic perspective, this is suboptimal: the
number of tokens required to represent an action chunk a;.p,
should depend on its intrinsic complexity and required pre-
cision. Simple behaviors may admit compact representations,
while complex, contact-rich interactions may require deeper
autoregressive refinement. Estimating action complexity online
and deciding when additional tokens meaningfully reduce
uncertainty remains an open problem. We view adaptive
autoregressive depth as a natural and important direction for
future work, enabled precisely by OAT ’s ordered and prefix-
decodable structure.
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APPENDIX

A. Implementation Details

This section provides comprehensive implementation details
for all policies, tokenizers, optimization settings, and evalua-
tion protocols referenced in the main paper.

All policies are trained to predict a contiguous action
chunk of horizon H, = 32, conditioned on the most recent
H, = 2 observations. During deployment, policies operate in
a receding-horizon manner: only the first %Ha = 16 actions
of each predicted chunk are executed before re-inference.
This execution strategy balances temporal consistency and
responsiveness, and is used consistently across all methods
unless stated otherwise.

We compare multiple action tokenization schemes within
the same autoregressive policy framework:

e Bin [7, 8, 28]: Each action dimension is discretized into
N = 256 uniform bins, yielding a token sequence whose
length scales with H, x D,.

e FAST [50]: We use a vocabulary size of |V| = 1024,
following standard configurations in prior work.

e QueST [45]: Action chunks are compressed using a
temporal convolution followed by a causal transformer
encoder, reducing the temporal horizon from H, to
H, = iHa =8.

e OAT: For fair comparison, OAT adopts the same decoder
architecture and latent dimensionality as QueST. The
tokenizer encoder is a 2-layer transformer with model
dimension 256 and head dimension 64. The latent rep-
resentation has horizon H; = 8 and latent dimension
D; = 4, discretized using finite scalar quantization
(FSQ) with levels [8, 5, 5, 5], corresponding to an implicit
codebook size of approximately 1000.

All autoregressive policies share the same backbone ar-
chitecture: a transformer decoder with 4 layers, model di-
mension 256, and head dimension 64. The decoder predicts
discrete action tokens autoregressively, using teacher forcing
during training and fully autoregressive rollout during in-
ference. Using a shared policy backbone isolates the effect
of action representation from policy capacity. In addition to
autoregressive policies, we include a diffusion-based baseline
(DP) [13]. The diffusion policy uses exactly the same 4-
layer transformer backbone as the autoregressive models,
ensuring that performance differences arise from the action
representation and inference paradigm rather than architectural
capacity. We employ a 10-step Denoising Diffusion Implicit
Models (DDIM) [56] sampling schedule for DP. All models
are trained using AdamW with identical optimization settings:
a constant learning rate of 5e—5 for tokenizers and policy
networks, and 1e-5 for observation encoders, with no weight
decay.

We evaluate and analyze policies on four widely used
simulation benchmarks:

o LIBERO [38]: liberol0; 50 demonstrations per task;
action dimension D, = 7.

o RoboMimic [43]: lift, square, can; 200 multi-human (mh)
demonstrations per task; action dimension D, = 7.

o MetaWorld [70]: box close, coffee pull, disassemble, stick
pull; 50 demonstrations per task; action dimension D, =
4.

o RoboCasa [40]: close drawer, coffee press button, turn
off microwave, turn off sink faucet,; 50 human demon-
strations and 150 machine-generated demonstrations per
task; action dimension D, = 12.

For each task, we evaluate 5 random seeds with 50 rollouts
per seed, resulting in 250 evaluation episodes per task. Perfor-
mance is reported as the mean task success rate with standard
error across rollouts.

B. The Structural Mismatch of FAST

A critical limitation of the FAST tokenizer arises from
the fundamental structural conflict between the probabilistic,
variable-length nature of Byte Pair Encoding (BPE) [18] and
the strict, fixed-dimensional requirements of robotic control.

1) Mechanism of FAST.: FAST operates by applying a
Discrete Cosine Transform (DCT) [1, 14] to action chunks,
pruning low-magnitude high-frequency components, and flat-
tening the remaining coefficients into a 1D integer sequence. A
BPE tokenizer is then trained to compress this sequence. While
this effectively separates coarse structure from fine detail, it
introduces a critical dependency between the token sequence
length and the action chunk topology.

2) Variable Expansion vs. Fixed Topology: In standard
large language models, the decoding process is agnostic to
the exact number of characters produced; a token representing
apple (5 bytes) is structurally valid in the same context as a
(1 byte). However, the FAST tokenizer maps discrete tokens to
variable-length sequences of DCT coefficients. Let a generated
token sequence be Ti.p, = [11,T%,...,Ty,]. Each token T;
expands into a sequence of integers s; of length |s;|. The
total sequence of coefficients S is the concatenation of these
expansions:

k
S=5Ps2®---DBsg, where|S| :Z|SZ|
i=1

The robot controller, however, strictly requires a control chunk
of dimensions H, x D, (time horizon X action dimension),
necessitating a fixed total coefficient count Nyggee = 1" X D.

3) The Decoding Failure: Because the policy is autoregres-
sive and probabilistic, it generates tokens based on likelihood
rather than structural constraints. There is no guarantee that
the generated sequence 1.7, Will satisfy |S| = Niarger. When
|S| # Nirger, the reshaping operation into (H,, D,) becomes
mathematically impossible, raising the “undecodable” error
(e.g., ValueError: cannot reshape array).

4) The “Spectral Shift” Catastrophe: Naive solutions, such
as padding or truncating S to match Ny, are catastrophic
due to the use of the discrete cosine transform (DCT) [1, 14].
The sequence S is an ordered flattening of frequency coef-
ficients. If a token generating 3 coefficients is replaced by



a token generating 2 coefficients (a “missing” coefficient at
index j), every subsequent coefficient at indices k£ > j shifts
position. In the frequency domain, this shift is semantically
destructive, for example, coefficients governing joint J may
drift into the slots for joint J 4 1. Consequently, the undecod-
able state acts as a necessary safety assertion. It is preferable to
halt execution (outputting a no-op) than to reshape a corrupted
coefficient sequence that would result in unpredictable and
potentially dangerous physical motion.

C. OAT Detokenization T 1

Similar to [73], the single-pass decoder is implemented as
a transformer decoder consisting of alternating self-attention
and cross-attention layers. The decoder cross-attends from a
fixed set of sinusoidal positional embeddings to the discrete
action tokens produced by OAT. The final decoder embeddings
are projected back into the continuous action space, yielding a
reconstructed action chunk of shape H, x D,. The tokenizer
and decoder are trained end-to-end using a reconstruction
objective, specifically mean squared error (MSE) between the
original and reconstructed action chunks.

When the latent bottleneck is small, training the decoder
with a simple reconstruction loss can lead to degraded recon-
struction quality, as the decoder must recover long-horizon ac-
tion sequences from severely compressed representations [16,
36, 37]. To address this limitation, OAT can employ a rectified
flow decoder conditioned on the quantized register latents.
Concretely, we construct partially noised action sequences

ai:HQ = (1 - t) a(l):Ha + tea

where af,; denotes the clean action chunk, ¢ € [0,1] is a
randomly sampled time step, and ¢ ~ N(0,7) is Gaussian
noise. The flow decoder receives the concatenation of the
noised actions and the quantized register tokens Quant(z1.x,)
and is trained to predict the flow

v=¢e—al, H,-
We minimize the rectified flow objective |9 — v||?, where
& = Dec(Quant(z1.1,) D al.py, ),
following prior work on flow-based generative modeling [2,
42].
D. Simulation Benchmarking

We provide full results of simulation experiments in Ta-
ble VI.



LIBERO

Soup/Sauce

Cheese/Butter

Soup/Cheese

Two Moka

Stove &

Bowl to

Mugs on

Book to

Mug &

Mug to

Policy #Tok. Inf. . R Avg.
Lat. Basket Basket Basket Pots Moka Drawer Plates Caddy Pudding Micro
DP X 42.0 26.0 =30 18.8 + 14 248 + 19 524 +27 56.8 34 628 :21 200=:17 184 +19 29.6:26 56.0 =31 | 36.6 =02
Bin 224 5172 1.6 =07 3.6 =07 4.0 =17 8.8 =20 240 =11 46.0 =34 28 15 31.2=:025 6.8 08 15624 | 144 206
FAST 442 1144 14.8 + 16 6.4 =07 1.6 =07 33.6 + 44 528 +14 504 :50 160=17 284 +17 22.0=:35 44 213 | 230 =05
QueST 8 27.1 22.4 +28 16.0 =238 31.6 =27 47.6 +20 796 19 88.0+14 20828 656=48 356=13 748 :37 | 482006
OAT; 1 10.5 24 +07 1.6 07 1.6 =07 2.8 +08 236 12  26.0 +20 0.8 205 268 +34 3610 280=:17 | 11.7 07
OAT 2 13.2 15.2 =31 164 =1 252 =21 392 =15 592 :24 69.6:43 140=:14 812+19 13.6:30 64820 | 398 05
OAT4 4 17.4 14.8 =14 164 =17 324 <00 57.2 =302 68.8 +31 784 :27 244 :15 86.0+21 148 :48 708 £22 | 46.4 =06
OATg 8 27.4 26.8 +32 35.6 26 51.6 =22 61.2 +43 87612 912:10 312:27 708=:45 320=:x28 752=+38 [ 56.3 1.0
OAT 8 27.4 56 +16 5.6 07 21.2 =41 33.6 +24 65.6 =12  81.2 +34 6.0 11 73.6 =40 32+16 56.0+22 | 352 +07
RoboMimic
. Inf. .
Policy #Tok. Lat. Lift Square Can Avg.
DP X 38.1 99.6 = 0.4 24.0 =18 77.6 =26 67.1 =13
Bin 224 509.5 86.0 = 13 1.2 08 31.2 24 39.5 +12
FAST 53.1 1420 53.6 =30 0.4 =04 18.0 =32 24.0 =15
QuesT 8 29.6 98.8 + 05 292 1438 72.8 <30 66.9 =03
OAT; 1 11.3 89.6 + 15 6.4 +12 56.4 =34 50.8 1.4
OATo 2 15.3 86.6 + 16 11.2 038 59.6 23 525 12
OAT, 4 18.4 99.2 =05 23.6 =16 732 =27 65.3 =09
OATg 8 29.9 99.2 05 39.2 +24 80.8 +23 73.1 £05
OAT y 8 29.2 96.8 + 1.0 16.0 + 4.2 70.4 =49 61.1 =12
MetaWorld
. Inf. Box Coffee . Stick
Policy #Tok. Lat. Close Pull Disassemble Pull Avg.
DP X 37.7 21.2 +46 27.6 + 1 232 1.0 52 =05 193 =16
Bin 128 306.6 9.6 =26 24.4 07 20.8 = 1.6 32 =05 14.5 <07
FAST 49.8  129.7 0.0 =00 16.4 =20 104 =26 1.6 =07 7.1 <07
QueST 8 31.4 124 =20 284 : 138 232 :14 7.6 04 17.9 =09
OAT; 1 15.5 20.0 =06 152 =04 6.4 +09 3.6 +13 11.3 204
OATy 2 17.9 32.4 +07 19.2 =12 10.8 = 0.4 32 +04 16.4 =03
OATy4 4 22.1 372 <202 224 =15 14.0 =17 44 07 19.5 =08
OATg 8 31.3 44.4 =12 264 =04 17.2 07 9.6 = 1.0 24.4 +03
OAT 8 31.3 324 =09 19.6 + 1 13.6 =09 4.8 +13 17.6 =05
RoboCasa
. Inf. Close Coffee Press Turn Off Turn Off
Policy #Tok. Lat. Drawer Button Microwave Sink Faucet Avg.
DP X 35.3 52.0 =238 56.8 + 36 52.8 =35 544 +138 54.0 =16
Bin 384 888.3 204 =16 22.0 23 31.2 =47 27.2 £32 27.7 09
FAST 69.7 166.1 20.8 =20 84 +15 16.8 + 1.4 6.8 +2.1 13.2 =11
QueST 8 30.2 54.8 =21 55.6 =45 42.0 =25 56.8 =16 523 =19
OAT; 1 13.5 472 +34 49.6 + 1.7 352 26 58.8 +35 477 =13
OAT 2 15.8 55.2 =202 53.6 =12 34.0 =46 584 +25 50.3 =08
OAT4 4 19.9 52.0 =14 528 +15 392 =12 62.8 +27 51.7 =10
OATg 8 30.0 53.6 =209 63.6 =19 42.8 39 58.4 46 54.6 = 1.1
OAT 8 30.0 55.6 =43 432 <19 36.4 =02 58.8 + 17 48.5 + 16

TABLE VI: Simulation benchmarking policy performance, tokenizer compression rate (#Tok.), and policy inference latency (Inf. Lat.) in
milliseconds (ms) on one NVIDIA A100. For FAST, which generates variable-length sequences, we report the mean token count. OAT g
denotes detokenization using the first K tokens, while OAT denotes tokenizer training without nested dropout. Results report mean success
rates with standard error across 5 seeds and 50 evaluation rollouts per seed per task.
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