
CS598KKH Final Exam
Chaoqi LIU

Fall 2023

Multi-robot path planning on a grid

(A) MAPF is NP-complete, it can be considered as a generalization of the sliding tile puzzle which is known
to be NP-complete (Ratner and Warrnuth 1986). Let’s introduce some notations, the precomputed
paths P = {pi}Ni=1, robots R = {ri}Ni=1, starts S = {si}Ni=1, goals G = {gi}Ni=1. It is obvious the

lower bound is O(
∑N

i=1 |pi|) where |pi| represents the length of path pi. This lower bound says
if there are no conflicts between paths in P , then, the number of solution steps is the sum of all
steps in each path. However, such situation is rare, conflicts appear in most cases. Let’s denote
a conflict between agents ai, aj in grid v at time t, C = (ai, aj , v, t). Given P , we can find all

conflicts. For example, consider the example (Figure 2) below, let’s name these grids

v11 v12
v21 v21
v31 v32

, given
p1 = v11 → v21 → v31, p2 = v12 → v22 → v32, p3 = v31 → v21 → v11. Then, we are able to know at time
0, a1 in v11, a2 in v12, a3 in v31; at time 1, a1 in v21, a2 in v12, a3 in v31; at time 2, a1 in v21, a2 in v22,
a3 in v31; at time 3, a1 in v21, a2 in v22, a3 in v21. We just see one conflict, (a1, a3, v21, 3). Similarly,
we can continue rollout and find all conflicts. Denote the number of conflicts found c, due to exchange
is O(1), we can raise the lower bound to O(c+

∑N
i=1 |pi|).

Next, I’d like to show that we cannot really find a meaningful upper bound for this method. Consider
the example in Figure 1. We can see under such configuration, at time t = l, we just moved agent1
a1, and it is a2’s turn, but a1 blocks a2’s way, as a result, a1 need to leave its current grid and make
a space for a2. Where can a1 go? Obviously, down is not possible because it is blocked by ak which
is going to move at the end of this round. The options left are up or left. In my algorithm, I used
Manhattan distance (L1), because robots cannot go diagonal, that’s why we should prefer L1 distance.
Under this metric, we realize that going left and right is “equally good” to the algorithm, and if this is
really unlucky, the planner picks to go up. Now we come to the time t = l + 1, and similarly, again and
again, agent a1 eventually goes to the very top as shown in t = l + k − 2. This is just one extreme case
robots may meet, but this illustrates that we cannot really tell the number of such cases, and we also
cannot assign a big-O to each case. As a result, I don’t think it is able for us to derive a meaningful
upper bound for this planner.

Figure 1: Blue dash line box is the goal grid of agent1 a1 (marked in blue). The blue dash vertical line is the
path p1 for a1, red horizontal dash lines are paths p2, p3, ..., pk−1 for agents a2, a3, ..., ak−1.

1

The method is not complete, consider the following counterexample.

Figure 2: Circles represent agents in the map, numbers on the agents represent the order of execution, colorful
squares represent goals. The left most configuration is the initial configuration. Both initial configuration
and the goal configuration are “unpacked”.

Obviously, in this order, failure will be reported. When it is the agent3’s turn, it requires exchange,
however, no 2× 2 “unpacked” squares can be found – condition 1, “at most one other robot B”, is not
satisfied. For this technique to succeed, we need “unpacked” squares whenever agents require exchange.

For the proposed method to succeed, we need the following conditions

• Unpacked and conflict-free start and goal configuration.

• No narrow passages less than 2-cell across.

• Given the precomputed paths P = {pi}Ni=1,∄C = (ai, aj , v, t) (i.e., a conflict between agent ai, aj
in grid v at time t) where we cannot apply exchange policy – no unpacked 2× 2 square around.
For example, in the counter-example, we have conflict (a1, a3, v21, 3) and no exchange policy can
be applied.

Some naive thoughts: I think this is very similar to the halting problem, I don’t know if this analog
is accurate, but given a MAPF instance and this planner, I don’t think it is able to tell the running
time and if it is going to succeed or fail, unless we run / simulate it. First, let’s think about running
time, I understand this can definitely be bounded by some function, but don’t think the bound will be
meaningful. As I described above, we cannot tell how many exchange we are going to apply due to cases
like the one in Figure 1 by directly observing the MAPF instance. If we are allowed to use a variable
e to represent the number of exchanges it will encounter, then the running time is O(e+

∑N
i=1 |pi|),

but the problem is I see no relationship between P and e unless we simulate. Next, I don’t think there
exists a program that given the MAPF instance and the planner, it can output SUCCESS or FAILURE
without simulate, this said, no preconditions checklist we can come up with to determine it is going to
succeed or fail. For example, how can we foreseen the case in Figure 1 without reasoning step by step
(in term of time t), which is simulation.

(B) In this prompt, we have lots of design choices, my algorithm included some nice design choices which
will be shown later. The pesudocode is presented below.

Algorithm 1 Nonsimultaneous MAPF Solver

Require: map M , robots R = {ri}Ni=1, starts S = {si}Ni=1, goals G = {gi}Ni=1, paths P = {pi}Ni=1,
replan
Initialize output command string result ← ∅, step count step ← 0
moved ← TRUE
while ∃ri ̸= gi and moved = TRUE do

moved ← FALSE
for i← 1 to N do

if replan = TRUE then ▷ replan paths for all agents, details later

2

for i← 1 to N do
pi ← BFS(ri, gi,M) ▷ BFS has linear running time, in grid cases, the best option

if ri = gi then ▷ current robot is at its goal
skip its round

waypoint ← GetClosestPathWaypoint(ri, pi,M) ▷ get the closest (L1) point on path
if ri = waypoint then ▷ robot is on the path

desired coord ← next point on the path ▷ move along the path
else if ri ̸= waypoint then ▷ deviate from path

desired coord ← greedily pick the (u, r, l, d)-point closest to path ▷ move back greedily

occupied ← CheckIfOccupied(desired coord, M) ▷ NONE if not occupied otherwise robot
if occupied = NONE then

moves ← MovePassiveAgent(ri, occupied, M) ▷ local planner, pesudocode later
if moves = NONE then ▷ local planner failed to find solution

just skip this one, possibly we have following agent can be moved

else
moves ← (ri, ActionFromCoords(ri, desired coord))

moved ← TRUE ▷ luckily, we have agents moved if we reach this line
for move in moves do

step ← step + 1
result ← result · moveStr(move) · WHITE SPACE ▷ moveStr is given in starter code
rj , aj ← move
moveRobot(rj , aj) ▷ moveRobot is given in starter code
optional: visualize

if ∀i, ri = gi then
report success
return result, step

else
report failed

Note that my algorithm incorporates two strategies to handle robots deviation from path. Robots
would deviate from their path if it is not in its round, and another robot want to take its current grid,
then, it has to move away to make a space for another robot because it is that robot’s round. The first
strategy is to replan, and this should be the best option we have, when it’s the robot’s round, and it is
not on its precomputed path, replan will get a new path for it, and hence, no need to go back to its
precomputed path. Second option here is just greedily move back to its precomputed path, one can see
this part in my above pseudocode clearly.

I will not present the pseudocode for BFS, GetClosestPathWaypoint, CheckIfOccupied,
ActionFromCoord since they are too trivial, but I will breifly explain. BFS is breath-first-search, it
has linear time, the prompt suggests to use Dijkstra, but in the grid world, edge costs are 1, Dijkstra
takes no advantage but a larger running time, thus, we should use BFS, or DFS, such linear time search
algorithm. GetClosestPathWayPoint, this just find the closest point on the computed path to the
robot’s current position, under L1 metric, just loop through all points on the path, pick the closest
one, that’s it. CheckIfOccupied, query that grid on map M , if no robots are there, return NONE,
otherwise, return the robot index in that grid. ActionFromCoord, returns u, r, d, r given a from
coord and a to coord, assert distance is 1 between them.

Next, I’m going to present pseudocode for the local planner that coordinates two robots under situation
described in the above pseudocode – need coordination / has potential conflict. The high level logic
behind is when active agent ai in its round, and want to take aj ’s current grid, in such case, we need aj
to move away from its current grid and make a space for ai. To resolve this, we go through all possible
grids aj can go to, they are four adjacent grids of aj , as well as those in the surrounding unpacked
squares. Next, we need to check if these potential grids to go to are valid. Then, among those valid
grids, we go to the one that is “cloest” to aj ’s goal. Pseudocode below.

3

Algorithm 2 Move Passive Agent – local planner

Require: active robot ri and its path pi goal gi, passive robot rj and its path pj goal gj , map M
I define active robot to be the robot that want to move to its desired grid because this is its round,
passive robot to be the robot that is in the grid which active robot want to be in. We should notice
that, under our case, L1 distance between ri, rj should be 1.
unpacked squares ← ∅ ▷ store all possible unpacked 2× 2 squares around for them to exchange
if ri, rj in the same column then

top ← max(ri.y, rj .y) ▷ point .y queries the y component
bottom ← top - 1
for offset ∈ {0, 1} do

left ← ri.x− 1+ offset ▷ point .x queries the x component
right ← left + 1
square ← the square bounded by top, right, bottom, left
if IsUnpackedSquare(ri, rj , square) then

unpacked squares ← unpacked squares ∪ {square}
else if ri, rj in the same row then

right ← max(ri.x, rj .x)
left ← right - 1
for offset ∈ {0, 1} do

bottom ← ri.y − 1+ offset
top ← bottom + 1
square ← the square bounded by top, right, bottom, left
if IsUnpackedSquare(ri, rj , square) then

unpacked squares ← unpacked squares ∪ {square}
possible evade coords ←

(rj .x, rj .y + 1), (rj .x, rj .y − 1), (rj .x+ 1, rj .y), (rj .x− 1, rj .y)

▷ store possible grids that passive robot can go to, initialized to the adjacent (u, r, d, r)-grids
for square in unpack squares do

add all grids in square to possible evade coords except passive robot’s current grid

valid evade coords ← ∅ ▷ store all valid grids that passive robot can go to
for coord in possible evade coords do

if no obstacle in coord and no other robot in coord then
valid evade coords ← valid evade coords ∪{coord}

if valid evade coords is empty then ▷ means no valid place to evade
report no valid coordination between robot ri, rj
return NONE ▷ as required by the global planner, we need to return NONE

for coord in valid evade coords do
waypoint ← GetClosestPathWaypoint(rj , pj ,M)
if waypoint is the closest to gj so far then

best evade coord ← coord
if best evade coord and rj has distance 2 under L2 metric then

return[
(rj ,ActionFromCoords(rj , best evade coord)), (ri,ActionFromCoords(ri, rj)

]
▷ passive robot step out of any possible unpack squares, no exchange policy required

else ▷ passive robot will go to one grid in some unpacked square, exchange policy required
if unpack squares is empty then ▷ no 2× 2 unpacked squares, exchange condition not satisfied

report no valid coordination between ri, rj
return NONE

for square in unpacked squares do

4

if PointInSquare(best evade coord, square) then
exchange square ← square
break

exchange plan ← Exchange2x2(ri, rj , rj , best evade coord, exchange square) ▷ provided
exchange moves ← ExchangeToMoves(exchange plan) ▷ provided
return exchange moves

I’m not going to present pseudocode for trivial functions in the local planner, but I’ll explain. PointIn-
Square, return TRUE if the point is inside the square, otherwise FALSE. IsUnpackedSquare, it
basically checks if all conditions mentioned in the prompt are satisfied, and then return TRUE / FALSE.

For map1, the proposed method cannot solve it, this is exactly the same counter-example I provided in
part (A). The reason is simple, agents start from four corners and they move to the central tunnel with
width only two, meaning that they are going to meet in the tunnel and cannot progress.

5.0 2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3

4

5

6

Figure 3: Map1 failure

For map2, it takes 41 steps with replan, output commands are Al Bd Cl Dd Ed Fl Al Bd Cl Dr Er Fl
Br Cl Dr Er Fl Br Al Cl Dr Fu Er Fl Fl Cd Ar Cl Br Eu Cl Er Ed Fl Cl Er Fl Cl Er Er Er; and 43
steps without replan and use greedy strategy, output commands are Al Bd Cl Dd Ed Fl Al Bd Cl Dr Er
Fl Br Cl Dr Er Fl Br Al Cl Dr Fu Er Fl Fd Cd Ar Cl Br Cu Er Fl Cl Er Fl Cl Er Fl Cl Er Fu Cd Er.

For map3, it takes 80 steps with replan, output commands are Au Bl Cl Du Eu Fu Al Bu Cl Eu Dr Dl
Ed Fr Al Bl Cu Er Dr Fr Er Fr Fu Al Fr Bl Cl Dr Er Eu Al Er Bl Cl Dr Cr Fd Cu Du Al Dr Bl Cl Ed
Fr Al Bl Cl Dd Er Fr Al Bl Cl Dr Er Fd Al Bl Cl Dr Er Fd Ad Bd Cl Dr Ed Fr Ad Bd Cd Dr Ed Fr
Cd Dd Er Cd Dd; and 86 steps without replan and use greedy strategy, output commands are Au Bl Cl
Du Eu Fu Al Bu Cl Eu Dr Dd Ed Fr Al Bl Cu Er Du Fr Er Fr Fu Al Fr Bl Cl Dr Er Eu Al Er Bl Cl Dr
Cr Fd Cu Du Al Dr Bl Cd Ed Cu Fr Cl Al Bl Cd Dd Cu Er Cl Fr Al Bl Cd Cu Dr Cl Er Fd Al Bl Cd
Dr Er Fd Ad Bd Cl Dr Ed Fr Ad Bd Cl Dr Ed Fr Cd Dd Er Cd Dd.

(C) For this part, we also have lots of design choices, through discussion with prof. Kris, I think it is
ok to have a planner that freeze all other robots if there is exchange taking place, and the planner
finishes exchange simultaneously first, then everything go back to normal setting, where robots move
simultaneously across the map. This method is easier to implement, but it is not efficient, because it
is possible that other robots can also move when there is exchange taking place, and even more, we
can have more than one exchange taking place. As a result, I’m going to provide a planner that can
simultaneously move all robots across the map, provided in the meanwhile, we can have exchanges
taking place.

Algorithm 3 Simultaneous MAPF Solver

Require: map M , robots R = {ri}Ni=1, starts S = {si}Ni=1, goals G = {gi}Ni=1, paths P = {pi}Ni=1,
replan

5

Initialize output command string result ← ∅, step count step ← 0
robot in exchange ← ∅
exchange threading ← {∀i, ri : NONE} ▷ dictionary
robot has queued action ← ∅
queued action ← {∀i, ri : NON} ▷ dictionary
moved ← TRUE
while ∃ri ̸= gi and moved = TRUE do

moved ← FALSE
grids registered ← ∅ ▷ grids that cannot be entered
moves executed this step ← ∅ ▷ store moves in this propagation step, for output purpose
for i← 1 to N do

if replan = TRUE then
for i← 1 to N do

pi ← BFS(ri, gi,M)

if robot in exchange is not empty then
for robot, policy in exchange threading with policy ̸= NONE do

add all grids in the 2× 2 square of this policy to grids registered

if ri in robot in exchange then ▷ robot under exchange, just run precomputed policy
partner, square, moves, step ← exchange threading [ri]
robot to move, action ← moves[step]
if ri = robot to move then ▷ this is ri’s move, otherwise, its partner will progress

MoveRobot(ri, action)
add moves[step] to moves executed this step
moved ← TRUE
step ← step + 1
if step = size of moves then ▷ no more move in moves, reset exchange threading

remove ri from robot in exchange
remove partner from robot in exchange
set exchange threading [ri] to NONE
set exchange threading [partner] to NONE

else ▷ update exchange threading
exchange threading [ri] ← (partner, square, moves, step)
exchange threading [partner] ← (ri, square, moves, step)

else if ri in robot has queued action then ▷ robot has queued action, details later
action ← queued action[ri]
MoveRobot(ri, action)
add (ri, action) to moves executed this step
moved ← TRUE
remove ri from robot has queued action
set queued action[ri] to NONE

else if ri = gi then
skip its round

else ▷ need to plan for this robot
waypoint ← GetClosestPathWaypoint(ri, pi,M)
if ri = waypoint then

desired coord ← next point on the path
else if ri ̸= waypoint then

desired coord ← greedily pick the (u, r, l, d)-point closest to path

occupied ← CheckIfOccupied(desired coord, M)
if occupied = NONE then

moves, exchanged, square ← MovePassiveAgent(ri, occupied, M)
if moves = NONE then

just skip this one, possibly we have following agent can be moved

6

else
moves ← (ri, ActionFromCoords(ri, desired coord))

if exchanged = TRUE then
add ri to robot in exchange ▷ register an exchange thread
exchange threading [ri] ← (occupied, square, moves, 0)
add occupied to robot in exchange ▷ register an exchange thread
exchange threading [occupied] ← (ri, square, moves, 0)
add all grids in square to grids registered ▷ register the square
robot to move, action ← moves[0]
if ri = robot to move then

MoveRobot(ri, action)
add moves[0] to moves executed this step
moved ← TRUE
if 1 = size of moves then

remove ri from robot in exchange
remove partner from robot in exchange
set exchange threading [ri] to NONE
set exchange threading [partner] to NONE

else
exchange threading [ri] ← (partner, square, moves, 1)
exchange threading [partner] ← (ri, square, moves, 1)

else if size of moves > 1 then ▷ no exchange required, but multiple moves
we can assert that size of moves is 2 ▷ checkout MovePassiveAgent
passive robot, passive action ← moves[0]
active robot, active action ← moves[1]
add passive robot to robot has queued action ▷ will explain
queued action[passive robot] ← passive action
current coord ← passive robot
next coord ← NextCoord(passive robot, passive action)
add current coord to grids registered
add next coord to grids registered

else ▷ no exchange required, and only one move
robot to move, action ← moves[0]
current coord ← robot to move
next coord ← NextCoord(robot to move, action)
if next coord in grids registered then

continue, because this move is not valid at the moment

MoveRobot(robot to move, action)
add move[0] to moves executed this step
moved ← TRUE
add current coord to grids registered
add next coord to grids registered

if moved = FALSE but robot in exchange or robot has queued action is not empty then
moved ← TRUE ▷ because we still can do something

optional: visualize
if moves executed this step is not empty then

step ← step + 1
result ← result · moveStr(moves) · WHITE SPACE

if ∀i, ri = gi then
report success
return result, step

else
report failed

7

TL;DR: basically keep track of robots that are exchanging, and each time it is their turn, execute one
move in the exchange policy.

In the above pseudocode, gray part is adapted from what we have in nonsimultaneous planner,
modification is indicated in blue. Here, exchanged is a boolean value indicating if we have exchange policy,
square is the 2×2 square exchange taking place. This said, we need modification toMovePassiveAgent
as well, but this is very trivial since we know which if-else branch we are in, we can easily tell the
value of exchanged, and that’s even more trivial for us to tell the exchange square, I’m not going to
present the modified pseudocode here. For NextCoord, this is also very straightforward, given current
coordinate and action (u, r, b, l), we just return the next coordinate.

Why we need queued action / robot? Because in MovePassiveAgent, one possible outcome is no
exchange requires because we can move passive robot one step away any unpacked squares, and then,
move the active agent one step (I explained why it is always 1 in our case) to its desired position (the
one occupied by passive agent). Now, we know under such situation, the returned plan by local planner
is

[
(passive robot, passive action), (active robot, active action)

]
in sequence. Next, why we queue the

passive agent’s movement? First, we should realize that in such situation, we cannot move active agent
until passive agent leaves its current position, second, it takes a little bit time to realize that, we cannot
move the passive agent anymore and we should save this step to next its round. Situation (1), passive
robot has a smaller index than active robot, in this case, we already have passive robot moved within
this round, we cannot move it anymore, so let’s save it to next round; situation (2), passive robot has a
larger index than active robot, in this case, there is not harm to queue its action, we just plan for it in
this step, and execute it when it is passive robot’s turn.

The preformance is definitely amazing. For map1, as analyzed before, this is not going to be solved by
this proposed method. For map2, it takes 12 steps with replan, output commands are AlBdClDdEdFl
AlBdClDrErFl BrClDrErFl BrDrFu AlBrClErFl CdFl ArClFl CuErFl ClEr ClEr ClEr CdEr; and
12 steps without replan, output commands are AlBdClDdEdFl AlBdClDrErFl BrClDrErFl BrDrFu
AlBrClErFl CdFd ArClFl CuErFl ClErFl ClErFu ClEr CdEr. For map3, it takes 22 steps with
replan, output commands are AuDuEuFu AlBuClEuFr AlBrClDrFr AlBlCuDrEd AuClDrFr AlBlClEr
AlBlCuDrFr AlClErFl AlBlCl AlBuClFr AdBlClFr AdBlCdDrErFr AdBlCdDrFd BlCdDrErFd BlDrErFr
BdDdErFr BdDdEr BdEd DrEd Du DlEr Dd; and failed without replan, this is greedy strategy failed
to figure its way out and put all robots into one place – the tunnel. But it is hard to say why the
nonsimultaneous planner worked on map3 without replan, I think one possible reason is this simultaneous
planner greedily adds possible robot move to execute in one time step, and this may leads to deaklock
or other situation that leads to failure.

(D) First, as what I showed in previous part, replan is definitely a good strategy to improve efficiency, refer
to results in previous parts. Second, if replan is adapted, we can avoid running BFS each time by
precompute heatmaps for each agent – backward full BFS that produces cost-to-go in each grid, then,
during online execution, we just follow the Bellman optimality condition to retrieve the next best step
that drives the agent to its goal. Additionally, with experiments, one map3, it is possible that robot
A’s path is making too much trouble for another robot B which is already at its goal – the A’ path
generated has B on its way, in this case, unnecessary steps appear. For example, the output commands
for map3 with replan is “... DrEd Du DlEr Dd”, the ending commands basically makes robot D out of
its goal grid, and make robot E to go through D’s goal grid, and then D goes back to its goal, this
is ridiculous. This said, one heuristic we can have is take robot which is already in its goal state as
obstacle in BFS search. This definitely helps, I’m not going to present results here, because all these
are hacks to make this proposed method better in a empirical manner.

Through discussion with prof. Kris, I think the best option is to present and analyze some SOTA
method in MAPF community. To my best knowledge, it is hard to have a multi-agent planner that
is both optimal and complete, but there do exist, LaCAM∗ (Keisuke Okumura, 2023), this is very
complicated, I would not be able to analyze such planner, but I would love to mention this recent
amazing planner.

8

https://arxiv.org/abs/2305.03632

Instead, in this part, I’m going to introduce Collision Based Search (CBS) by Sharon et al., 2015, which
is solution complete and optimal, by solution complete, we mean the planner ensures to find solutions
for solvable instances but it never identifies unsolvable ones. The reason is CBS is the foundation of
many recent MAFP algorithms, e.g., Enhanced CBS (ECBS), Explicit Estimation CBS (EECBS). CBS
is not particularly amazing in MAPF, because it cannot handle large number of agents, but such idea
/ method / framework is definitely worth discussing. The following is largely informed by external
resources, but rephrased and summarized with my own words, links are attached.

Problem definition: In MAPF problem, we have graph G = (V,E), a set of k agents with labels
a1, ..., ak. Start positions si ∈ V , goal positions gi ∈ V . At each time step, agent ai can move to its
adjacent position or wait in its current position. The goal is to return a set of actions for each agent, so
that it can move to its goal from start without conflicting other agents.

Introduce CBS: The state space of MAPF is exponential in k the number of agents. However, in a
single-agent pathfinding problem, the state space is linear in the graph size. CBS solves the MAPF
problem by decomposing it into a large number of single-agent pathfinding problems. Each problem
is relatively simple to solve, while there may be an exponential number of such single-agent problem.
This is the essential idea behind CBS and the following recently developed SOTA MAPF solvers. To
proceed, let’s introduce some notion throughout following discussion. By path, we mean the path for
one agent, while we use solution to represent k paths for k agents. We define constraint for a given
agent ai be (ai, v, t), which says agent ai cannot be in position v at time step t. A consistent path for
agent ai is a path that satisfies all its constraints, similarly, a consistent solution is a solution that
made up from k consistent paths. A conflict, (ai, aj , v, t), means agent ai and aj occupy position v at
time step t. A solution is valid if all its paths have no conflicts. A consistent solution can be invalid if,
despite the fact that the paths are consistent with their individual agent constraints, there paths still
have conflicts. Again, I emphasize that the key idea of CBS is to grow a set of constraints for each
agent and find paths that are consistent with the constraints. This is the ultimate contribution of CBS
in MAPF community. If these paths have conflicts, and are thus invalid, the conflicts are resolved by
adding new constraints. CBS does this by working in two levels. At the high level, conflicts are found
and constraints are added, then, the low level updates the agents paths to be consistent with the new
constraints.

High level: Search the Constraint Tree (CT): CBS searches a constraint tree (CT), which is a
binary tree. Each node N in CT contains (1) A set of constraints (can be queried by N.constraints).
Note that root of CT contains an empty set of constraints. The child of a node in the CT inherits the
constraints of the parent and adds one new constraint for one agent. (2) A solution (can be queried by
N.solution). The k paths are found by low level. (3) The total cost (can be queried by N.cost) of the
current solution. We denote this cost the f -value of the node. Node N in the CT is a goal node when
N.solution is valid. The high level performs a best-first search on the CT where nodes are ordered by
their costs. Ties are broken by using a conflict avoidance table (CAT), this is a dynamic lookup table
under the Independence Detection (ID) framework.

Processign a node in the CT: Given N.constraints in the CT, the low level search in invoked. This
search returns one shortest path (SP) for each agent ai that is consistent with all constraints associated
with ai in node N . Once a consistent path has been found for each agent w.r.t. its constraints, these
paths are then validated w.r.t. other agents. The validation performed by simulating the set of k paths.
If all agents reach their goal without any conflict, this CT node N is declared as the goal node, and
the current solution N.solution is returned. If, however, while performing the validation a conflict
C = (ai, aj , v, t) is found for two or more agents ai, aj , the validation halts and the node is declared as
a non-goal node.

Resolving a conflict: Given a non-goal CT node N whose solution N.solution includes a conflict
Cn = (ai, aj , v, t), at least one constraints (ai, v, t) or (aj , v, t) should be added to N.constraints. To
guarantee optimality, both possibilities are examined and N is split into two children. Both children
inherit N.constraints. The left child resolves the conflict by adding (ai, v, t) and the right child adds
(aj , v, t).

9

https://www.sciencedirect.com/science/article/pii/S0004370214001386
https://ojs.aaai.org/index.php/SOCS/article/view/18315
https://arxiv.org/pdf/2010.01367.pdf
https://trevorstandley.com/papers/ID_for_MAPP.pdf

Algorithm 4 High level of CBS

Require: MAPF instance
R.constraints← ∅
R.solution← find individual paths using the LowLevelCBS()
R.cost← cost of R.solution
insert R to OPEN ▷ OPEN is the standard queue in search
while OPEN is not empty do

P ← best node from OPEN ▷ lowest solution cost
Validate the paths in P until a conflict occurs
if P has no conflict then

return P.solution ▷ P is goal

C ← fist conflict (ai, aj , v, t) in P
for each agent ai in C do ▷ there are {ai, aj}

A← new node
A.constraints← P.constraints ∪ (ai, v, t) ▷ optimality can be proved
A.solution← P.solution
Update A.solution by invoking LowLevelCBS(ai)
A.cost← cost of A.solution
Insert A to OPEN

Low level: Find Paths for CT Nodes: The low level is given an agent ai, and a set of associated
constraints. It performs a search in the underlying graph to find an optimal path for ai that satisfy all
its constraints. Agent ai is solved in a decoupled manner, i.e., ignoring the other agents. This search is
3-dimensional, as it includes two spatial dimensions, and one time dimension, i.e., (x, y, t). We can use
whatever search to generate SP for this single-agent pathfinding problem.

By now, I discussed this solution complete and optimal MAPF framework CBS, this is much better
than the proposed method. I’ll argue in two perspectives. First, the proposed method cannot handle
map1 as I explained in previous parts, but it is obvious there exists solution in that map – the stupidest
commands, just move robot A to its goal with all other robots freezed, this is possible because it is so
obvious such path exists, the same for all other robots. Recall CBS is solution complete, meaning CBS
can find a solution for map1, and map2, map3 as well. Second, CBS produces optimal solution, it is
obvious at the moment, the proposed method generates nonoptimal solutions, and even not bounded
suboptimal solutions, the resulting commands are attached in previous parts. CBS, however, can solve
these three maps optimally.

But I haven’t prove that CBS is solution complete and optimal. Let’s prove that CBS will returns an
optimal solution (optimality) if one exists (solution complete).

Definition 1 For given node N in a CT, let CV (N) be the set of all solutions that are: (1) consistent
with the set of constraints of N and (2) are also valid, i.e., no conflict.

If N is not a goal node, then the solution of N will not be part of CV (N) because it is not valid.

Definition 2 For any solution p ∈ CV (N) we say that node N permits the solution p.

The root of the CT, for example, has an empty set of constraints. Any valid solution satisfies the empty
set of constraints. Thus the root node permits all valid solution. The cost of a solution in CV (N) is the
sum of the costs of the individual agents. Let minCost(CV (N)) be the minimum cost over all solution
in CV (N).

Lemma 1 The cost of a node N in the CT is a lower bound on minCost(CV (N)). proof: N.cost is
the optimal cost of a set of paths that satisfy N.constraints. This set of paths is not necessarily a valid
solution. Thus, N.cost is a lower bound on the cost of any set of paths that make a valid solution for
N as no single agent in any solution can achieve its goal faster.

Lemma 2 Let p be a valid solution. At all time steps there exists a CT node N in OPEN that permits
p. proof: By induction on the expansion cycle: For the base case OPEN only contains the root node,
which has no constraints. Consequently, the root node permits all valid solutions and also p. Now,

10

assume this is true for the first i expansion cycles. In cycle i+ 1, assume that node N , which permits
p, is expanded and its children N ′

1, N
′
2 are generated. Any valid solution in V S(N) must be either in

V S(N ′
1) or V S(N ′

2), as any valid solution must satisfy at least one of the new constraints.

One step further, we realize that at all times at least one CT node in OPEN permits the optimal
solution (as a special case of lemma 2).

Theorem CBS returns the optimal solution. proof: Consider the expansion cycle when a goal node G
is chosen for expansion by the high level. At that point all valid solutions are permitted by at least one
node from OPEN (lemma 2). Let p be a valid solution (with cost c(p)) and let N(p) be the node that
permits p in OPEN, let c(N) be the cost of node N . We then have c(N(p)) ≤ c(p) (lemma 1). Since G
is a goal node c(G) is a cost of a valid solution. Since the high level search explores solution costs in a
best-first manner, we eventually have c(g) ≤ c(N(p)) ≤ c(p).

For detailed proof and other theoretical analysis on situations that CBS is greatly better then existing
MAPF solvers (back in 2015), one should refer to the origin paper, links are all attached before.

11

